253. The Existence of Helical Chirality in a Sterically Congested Naphtho [9] annulenone

Preliminary Communication

by Apostolos G. Anastassiou¹) and Misbahul Hasan

Department of Chemistry, University of Petroleum and Minerals, Dhahran, Saudi Arabia

(21.1X.82)

Summary

The existence of the naphtho [9] annulenone 1 in two skeletally enantiomeric forms is demonstrated with the use of ¹H-NMR. spectroscopy in conjunction with a chiral 'shift' reagent.

An interesting feature of cyclic frameworks which are sufficiently large to be nonplanar and to exist in a conformationally mobile state, is that restriction of such mobility should, in the absence of a center of symmetry, lead to the development of skeletal chirality. Work with the unsaturated nine-membered ring [1] has often raised the question as to whether congestive annulation might not sufficiently reduce the system's skeletal flexibility to the point of adopting a rigidly helical shape. The sterically congested naphtho[9]annulenone 1 [2] constitutes a suitable substance, and we examined this possibility by using ¹H-NMR. spectroscopy and a chiral 'shift'-reagent, namely tris(d, d-dicamphoylmethanato)europium (III) (Eu(dcm)₃, 2)²). The reason for employing this composite system is that 'contact'

Run	Mol ratio [2]/[1]	Signal separation ($\Delta\delta$ (Hz))						
		H _a ^b)	H _b	H _c	H _d	Hg	H _h	Ho
1	0.21	16.0	5	4	2	c)	c)	7.7
2	0.25	c)	6	5.8	3.5	c)	c)	9.0
3	0.38	c)	13	11.3	6.0	5.5	c)	18.1
4	0.52	72.9	18	16.4	9	c)	10.6	27.0
5	0.71	96.2	23	21.5	11.9	c)	10.8	35.2

Table. Chirally induced ¹H-NMR. shifts^a) of 1 in the presence of $Eu(dcm)_3(2)$

a) 200 MHz in (D_6) benzene.

b) Unequivocal assignment relating to this proton by decoupling procedures in run 5.

^c) Shift not available owing to signal overlap.

1) On leave from Syracuse University.

²) This substance may be purchased in good purity from the Ventron Division of Alfa Chemicals.

Figure. ¹*H-NMR. spectra* (200 MHz, (D₆)benzene), *a*: 1^a); *b*: 1+2 (run 2 in the *Table*); *c*: 1+2 (run 5 in the *Table*); *d*: 1+Eu(dpm)₃ (molar ratio: $[Eu(dpm)_3]/[1] \approx 0.27$)

complexation between the carbonyl O-atom of helical enantiomers A, B and 2 would lead to two diastereoisomeric arrangements with pairs of chirally related but magnetically distinct protons H_a to H_b .

Our findings (*Table* and *Figure*) establish unequivocally that 1 indeed consists of two chirally related, conformationally rigid forms. The presence of 2 led to substantial separation between *all* enantiomerically related pairs of ring protons yielding the expected patterns (*Figure*, *b* and *c*) and enhancement in signal separation with increased amount of 2. Particularly revealing in this connection is that the second most pronounced signal separation observed, *i.e.* between the lowest field doublets, measured at 35 Hz in run 5, relates *not* to a proton directly bound to the C₉-helix but rather to one whose general appearance in the spectrum (*d*, J = 7.3 Hz) requires it to be *ortho*-linked (H_o) to one of the phenyl appendages. The fact that such a proton experiences a helicity-induced shift in the ¹H-NMR. spectrum means that its phenyl host is subject to restricted rotation. Our interpretation is also strongly supported by the results of a suitable control experiment in which a mixture of 1 and the *nonchiral* shift reagent Eu (dpm)₃ displayed (*Figure*, *d*) the expected downfield ¹H-NMR. shifts relative to uncomplexed 1 but with *no change in overall pattern*³).

All attempts at this early stage to estimate key activation parameters for the skeletal inversion process required to interconvert helical enantiomers **A** and **B** were frustrated, not unexpectedly, by the fact that the degree of complexation between **1** and **2** decreases with increasing temperature as revealed by the observation of sharply reduced helicity-induced signal separation as well as overall downfield shifts. When recorded at 80° the ¹H-NMR, spectrum of the **1**+**2** mixture listed in (run 3, in the *Table*) displayed features distinctly similar to those of the uncomplexed host (*Figure, a*).

Financial support for this research (CY/NINERING/57) by the University of Petroleum and Minerals is gratefully acknowledged with special appreciation to Dr. F. H. Dakhil, Vice Rector for Research, for strong support vital to its initiation.

REFERENCES

^[1] A.G. Anastassiou, Acc. Chem. Res. 5, 281 (1972); ibid 9, 453 (1976).

^[2] A.G. Anastassiou, H.S. Kasmai & M. Sabahi, Chem. Commun. 1979, 1031.

³) Similar results were obtained upon using the *upfield* shift reagent $(D_{27})Pr(fod)_3$.